ترجمه عمران - 28 صفحه
سال 2016
Evaluation of response modification factor for steel structures with soft story retrofitted by viscous damper device
ارزیابی ضریب اصلاح رفتار در سازه های فولادی با طبقه ی نرمِ مجهز شده با دستگاه میراگر ویسکوز
H Abdi, F Hejazi, MS Jaafar and IA Karim
http://journals.sagepub.com/doi/abs/10.1177/1369433216642036
دانلود رایگان مقاله انگلیسی - اصلاح رفتار در سازه های فولادی
چکیده
طبقه ی نرم در زیر زمین ساختمان های بلند در پارکینگ ها یا فروشگاه ها قرار می گیرد. با توجه به محدودیت های موجود در معماری، ممکن است این سازه ها با اجرای اتلاف و پراکندگی انرژی زمین لرزه مانند دستگاه های میراگر ویسکوز در سطح طبقه ی نرم مجهز شوند. لذا، مرور جامع متون مربوطه نشان می دهد که تاثیر میراگر ویسکوز بر ضریب اصلاح رفتار مورد بررسی قرار نمی گیرد. بنابراین، این مقاله ضرایب اصلاح رفتار را در سازه های فولادی مجهز شده با دستگاه های میراگر ویسکوز در سطح طبقه ی نرم پیشنهاد نمی دهد و تاثیر اجرای برخی دستگاه ها در ضریب اصلاح رفتار را مورد بررسی قرار داده است. در این تحقیق، سازه های فولادی با طبقات عظیم برای ارزیابی ضریب اصلاح رفتار در نظر گرفته شدند، این تحقیق بر پایه ی سه ویژگی گردآوری شد، این سه ویژگی ضرایب یا عوامل استحکام، قابلیت تورق یا کشش و افزونگی نامیده می شوند. تحلیل استاتیکی غیر خطی شبه استاتیک با استفاده از نرم افزار المان محدود مبنی بر مدل های ساختاری و سازه ای تجهیز شده با دستگاه های میراگر اجرا شد که در مکان های مختلفی از سطح پارکینگ نصب شده بودند. هیچ دهانه ی بازی در دیگر طبقات برای نصب دستگاه های میراگر در دسترس نبود. در حالیکه ، ضرایب اصلاح رفتار ، استحکام و تورق (کشش) با تحلیل استاتیک غیر خطی ایجاد شدند. نتایج مطالعه اشکار ساخت که ضرایب اصلاح رفتار در سازه های تجهیز شده با دستگاه های میراگر بلندتر از سازه های بدون دستگاه های میراگر است. علاوه براین، مقدار و ارزش ضریب اصلاح رفتار تحت تاثیر برخی طبقات و میراگرها قرار دارد. با توجه به نتایج تحلیل در نمونه های مختلف، معادله ی دترمینانِ ضریب اصلاح رفتار در سازه های فولادی با دستگاه های میراگر ویسکوز در سطح طبقه ی نرم پیشنهاد شد.
کلید واژه ها: میراگر، ضریب تورق یا کشش، قاب ها، ضریب استحکام مفرط، ضریب اصلاح رفتار، رفتار وابسته به زمین لرزه
Abstract
The soft story located in the basement of tall buildings for parking or shopping lot. Considering the limitation in architecture, these structures may be retrofitted by implementing earthquake energy dissipation such as viscous damper devices in soft story level. Nevertheless, an extensive review of related literature indicates that the effect of viscous damper on response modification factor is not considered. Therefore, this study proposed the response modification factors for steel structures furnished with viscous damper devices in soft story level and investigated the effect of implementing such devices on the response modification factor. In this research, steel structures with numerous stories were considered to evaluate the response modification factor, which was formulated based on three aspects, namely, strength, ductility, and redundancy factors. Quasi-static nonlinear analysis was performed using finite element software based on structural models equipped with damper devices installed in different locations of the parking level. No open bay is available in other floors to install the damper devices. Meanwhile, the overstrength, ductility, and response modification factors were established by conducting pushover analysis. Results of the study revealed that the response modification factors for structures equipped with damper devices are higher than those of structures without damper devices. Moreover, the value of response modification factor was affected by the number of stories and number of dampers. Considering the analytical results for different cases, the equation for determining the response modification factor for steel structures furnished by viscous damper devices in soft story level was proposed

References
American Society of Civil Engineers (ASCE) (2002) Seismic Evaluation of Existing Buildings. Reston, VA: ASCE. Google Scholar
Andalib Z, Kafi MA, Kheyroddin A, . (2014) Experimental investigation of the ductility and performance of steel rings constructed from plates. Journal of Constructional Steel Research 103: 77–88. Google Scholar
Applied Technology Council (ATC) (1978) Tentative provisions for the development of seismic regulations for buildings. Report no. ATC-3-06. Redwood City, CA: ATC, pp. 45–53. Google Scholar
Applied Technology Council (ATC) (1995a) A critical review of current approaches to earthquake-resistant design. Report no. ATC-34. Redwood City, CA: ATC. Google Scholar
Applied Technology Council (ATC) (1995b) Structural response modification factors. Report no. ATC-19. Redwood City, CA: ATC. Google Scholar
Applied Technology Council (ATC) (1996) Seismic evaluation and retrofit of concrete building. Report no. ATC-40, November. Redwood City, CA: ATC. Google Scholar
Ashour SA, Hanson RD (1987) Elastic seismic response of buildings with supplemental damping. Report UMCE 87-1, January. Ann Arbor, MI: Department of Civil Engineering, University of Michigan. Google Scholar
Dang HV, François R (2014) Prediction of ductility factor of corroded reinforced concrete beams exposed to long term aging in chloride environment. Cement and Concrete Composites 53: 136–147. Google Scholar
Federal Emergency Management Agency (FEMA) (1997) Guidelines for the seismic rehabilitation of buildings. FEMA 273, October. Washington, DC: FEMA. Google Scholar
Freeman SA (1992) On the correlation of code forces to earthquake demands. In: Proceedings of the 4th US-Japan workshop on the improvement of structural design and construction practices, Report ATC 15-3. Redwood City, CA: Applied Technology Council. Google Scholar
Güneyisi EM, D’Aniello M, Landolfo R, . (2013) A novel formulation of the flexural overstrength factor for steel beams. Journal of Constructional Steel Research 90: 60–71. Google Scholar
Habibi A, Chan RWK, Albermani F (2013) Energy-based design method for seismic retrofitting with passive energy dissipation systems. Engineering Structures 46: 77–86. Google Scholar
Hanson RD, Aiken ID, Nims DK, . (1993) State-of-the-art and state-of-the-practice in seismic energy dissipation. In: Proceedings of ATC-17-1 seminar on seismic isolation, passive energy dissipation, and active control, San Francisco, CA, 11–12 March, pp. 449–471. Redwood City, CA: Applied Technology Council. Google Scholar
Hejazi F, Jilani S, Noorzaei J, . (2011) Effect of soft story on structural response of high rise buildings. IOP Conference Series: Materials Science and Engineering. DOI: 10.1088/1757-899X/17/1/012034. Google Scholar
Hejazi F, Noorzaei J, Jaafar MS, . (2009) Earthquake analysis of reinforce concrete framed structures with added viscous damper. International Journal of Applied Science, Engineering and Technology 65: 284–293. Google Scholar
Hejazi F, Toloue I, Jaafar MS (2013) Optimization of earthquake energy dissipation system by genetic algorithm. Computer-Aided Civil and Infrastructure Engineering 28: 796–810. Google Scholar
International Building Code (IBC) (2000) International building code. In: Proceedings of the international conference of building officials, Whittier, CA, March 2000. Google Scholar
International Building Code (IBC) (2003) International building code. In: Proceedings of the international conference of building officials, Whittier, CA, January 2003. Google Scholar
International Building Code (IBC) (2012) International building code. In: Proceedings of the international conference of building officials, Whittier, CA, May 2012. Google Scholar
Izadinia M, Rahgozar MA, Mohammadrezaei O (2012) Response modification factor for steel moment-resisting frames by different pushover analysis methods. Journal of Constructional Steel Research 79: 83–90. Google Scholar
Kim J, Choi H (2005) Response modification factors of chevron-braced frames. Engineering Structures 27: 285–300. Google Scholar
Lin YY, Chang KC (2003) A study on damping reduction factor for buildings under earthquake ground motions. Journal of Structural Engineering: ASCE 129(2): 206–214. Google Scholar
Mahmoudi M, Abdi MG (2012) Evaluating response modification factors of TADAS frames. Journal of Constructional Steel Research 71: 162–170. Google Scholar
Mahmoudi M, Zaree M (2010) Evaluating response modification factors of concentrically braced steel frames. Journal of Constructional Steel Research 66: 1196–1204. Google Scholar
Mahmoudi M, Zaree M (2013) Determination the response modification factors of buckling restrained braced frames. Procedia Engineering 54: 222–231. Google Scholar
Mahmoudi M, Mirzaei A, Vosough S (2013) Evaluating equivalent damping and response modification factors of frames equipped by pall friction dampers. Journal of Rehabilitation in Civil Engineering 1: 78–92. Google Scholar
Miranda E, Bertero VV (1994) Evaluation of strength reduction factors for earthquake-resistant design. Earthquake Spectra 10(2): 357–379. Google Scholar
Moghaddam H, Hajirasouliha I, Doostan A (2005) Optimum seismic design of concentrically braced steel frames: concepts and design procedures. Journal of Constructional Steel Research 61: 151–166. Google Scholar
Mohebkhah A, Chegeni B (2014) Overstrength and rotation capacity for EBF links made of European IPE sections. Thin-Walled Structures 74: 255–260. Google Scholar
Mollaioli F, Liberatore L, Lucchini A (2014) Displacement damping modification factors for pulse-like and ordinary records. Engineering Structures 78: 17–27. Google Scholar
Mondal A, Siddhartha Ghosh S, Reddy GR (2013) Performance-based evaluation of the response reduction factor for ductile RC frames. Engineering Structures 56: 1808–1819. Google Scholar
Nassar AA, Krawinkler H (1991) Seismic demands for SDOF and MDOF systems. Report no. 400/J54/no. 95, June. Stanford, CA: The John A. Blume Earthquake Engineering Center, 224 pp. Google Scholar
NEHRP (1994) Recommended Provisions for Seismic Regulations for New Buildings. Washington, DC: Federal Emergency Management Agency. Google Scholar
NEHRP (1997) Recommended Provisions for Seismic Regulations for New Buildings. Washington, DC: Federal Emergency Management Agency. Google Scholar
NEHRP (2000) Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, 2000 Edition—Part 2: Commentary. Washington, DC: Building Seismic Safety Council. Google Scholar
Newmark NM, Hall WJ (1982) Earthquake Spectra and Design (EERI monograph series). Oakland, CA: Earthquake Engineering Research Institute. Google Scholar
Osteraas JD, Krawinkler H (1990) Strength and ductility considerations in seismic design. Report no. 90, June. Stanford, CA: The John A. Blume Earthquake Engineering Center, Stanford University. Google Scholar
Rahgozar MA, Humar JL (1998) Accounting for overstrength in seismic design of steel structures. Canadian Journal of Civil Engineering 25: 1–15. Google Scholar
Ramirez OM, Constantinou MC, Kircher CA, . (2000) Development and evaluation of simplified procedures for analysis and design of buildings with passive energy dissipation systems. Report no. MCEER-00-0010, 8 December 2000. New York: Multidisciplinary Center for Earthquake Engineering Research (MCEER). Google Scholar
Riddell R, Hidalgo P, Cruz E (1989) Response modification factors for earthquake resistant design of short period structures. Earthquake Spectra 5(3): 571–590. Google Scholar
SEAOC (1959) Recommended Lateral ‘Force Requirement and Commentary’. Sacramento, CA: Seismology Committee, Structural Engineers Association of California. Google Scholar
SEAOC (1999) Recommended Lateral Force Requirements and Commentary. Sacramento, CA: Seismology Committee, Structural Engineers Association of California. Google Scholar
Uniform Building Code (UBC) (1994) Uniform building code. In: Proceedings of the international conference of building officials, Whittier, CA, 1 July 1994, vol. 2. Google Scholar
Uniform Building Code (UBC) (1997) Uniform building code. In: Proceedings of the international conference of building officials, Whittier, CA, April 1997, vol. 1. Google Scholar
Wilson EL (2002) Three-Dimensional Static and Dynamic Analysis of Structures: A Physical Approach with Emphasis on Earthquake Engineering. Berkeley, CA: Computers and Structures, Inc. Google Scholar
Wu JP, Hanson RD (1989) Inelastic response spectra with high damping. Journal of the Structural Division: ASCE 115(6): 1412–1431. Google Scholar
Zeynalian M, Ronagh HR (2012) An experimental investigation on the lateral behavior of knee-braced cold-formed steel shear walls. Thin-Walled Structures 51: 64–75. Google Scholar
Zhu B, Frangopol DM (2014) Effects of post-failure material behaviour on redundancy factor for design of structural components in nondeterministic systems. Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance. Epub ahead of print 3 September. DOI: 10.1080/15732479.2014.951864. Google Scholar