ترجمه کامپیوتر- 9 صفحه
الگوریتم بهینه سازی کلونی مورچه
Ant colony optimization algorithms
دانلود رایگان مقاله انگلیسی -ترجمه کامپیوتر
الگوریتم بهینه سازی کلونی مورچه
رفتار مورچه برگرفته از یک روش بهینه سازی فوق العاده ابتکاری می باشد. در علوم کامپیوتر و تحقیقات صورت گرفته ، الگوریتم بهینه سازی شده کلونی مورچه (ACO) ، یک روش احتمالی برای حل مسائل محاسباتی در نظر گرفته شده که از طریق کاهش احتمال داده ها در نمودار می توان راههای خوبی را بدست آورد.
- این الگوریتم یک عضو از خانواده الگوریتم کلونی مورچه می باشد که با یک سری روشهای خلاقانه و با توجه به یک روش بهینه سازی فوق العاده ابتکاری همراه می باشد. در ابتدا پیشنهادات ارائه شده توسط آقای مارکو دوریجو درسال 1992 در پایان نامه دکترای ایشان بر اساس یک سری نمودار ها بود که در آن هدف جستجوی یک سری مسیرهای بهینه در یک نمودار بوده است و بر اساس آن رفتار مورچه را برای پیدا کردنمنبع غذا در نظر می گیرند.ایده اولیه بر اساس حل مشکلات وسیع تر و متنوع تر بوده است که در نتیجه ان بر اساس جنبه های مختلف رفتار مورچه ها ، مسائل کاملا متعددی به میان آمد.
در دنیای طبیعی موررچه ها در ابتدا به طور سرگردان و تصادفی به دنبال منبع غذایی می گردند که این می تواند مسیرهای متعددی رادر بر داشته باشد.سایر مورچه ها برای پیدا کردن چنین مسیری به احتمال زیادبهطور تصادفی یک مسیر طولانی رادنبال نمی کنند بلکه با تقویت مسیر دیگران به پیدا کردنغذا ادامه میدهند.(به ارتباط مورچه ها توجه کنید.).
با گذشت زمان با این حال دنبال کردن باعث می شود تا فورمون شروع به تبخیر کند و کاهش قدرت را برای موچه ها به دنبال دارد. با گذشت زمان بیشتر برای مورچه ها دنبال کردن مسیر با تبخیر فرمون همچنان ادامه دارد. در یک مسیر کوتاه این راهپیمایی برای مورچه ها را با یک چگالی فورمون بالاتر نسبت به مسیر های طولانی تر مقایسه کرد. تبخیر فرمون همچنین با استفاده از یک راه حل بهینه همگرایی همراه است.تبخیر فرمون بسته به انتخاب مسیر مورچه ها می باشد که تا چه حد باید جذب شود.دراین صورت یک سری راه حلهای محدود به میان می آید.
Ant colony optimization algorithms
In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs.
This algorithm is a member of the ant colony algorithms family, in swarm intelligence methods, and it constitutes some metaheuristic optimizations. Initially proposed by Marco Dorigo in 1992 in his PhD thesis,[1][2] the first algorithm was aiming to search for an optimal path in a graph, based on the behavior of ants seeking a path between their colony and a source of food. The original idea has since diversified to solve a wider class of numerical problems, and as a result, several problems have emerged, drawing on various aspects of the behavior of ants.
Summary
In the natural world, ants (initially) wander randomly, and upon finding food return to their colony while laying down pheromone trails. If other ants find such a path, they are likely not to keep travelling at random, but to instead follow the trail, returning and reinforcing it if they eventually find food (see Ant communication).
Over time, however, the pheromone trail starts to evaporate, thus reducing its attractive strength. The more time it takes for an ant to travel down the path and back again, the more time the pheromones have to evaporate. A short path, by comparison, gets marched over more frequently, and thus the pheromone density becomes higher on shorter paths than longer ones. Pheromone evaporation also has the advantage of avoiding the convergence to a locally optimal solution. If there were no evaporation at all, the paths chosen by the first ants would tend to be excessively attractive to the following ones. In that case, the exploration of the solution space would be constrained.
Thus, when one ant finds a good (i.e., short) path from the colony to a food source, other ants are more likely to follow that path, and positive feedback eventually leads all the ants following a single path. The idea of the ant colony algorithm is to mimic this behavior with "simulated ants" walking around the graph representing the problem to solve.

Ant colony optimization algorithms
In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs.
This algorithm is a member of the ant colony algorithms family, in swarm intelligence methods, and it constitutes some metaheuristic optimizations. Initially proposed by Marco Dorigo in 1992 in his PhD thesis,[1][2] the first algorithm was aiming to search for an optimal path in a graph, based on the behavior of ants seeking a path between their colony and a source of food. The original idea has since diversified to solve a wider class of numerical problems, and as a result, several problems have emerged, drawing on various aspects of the behavior of ants.
Summary
In the natural world, ants (initially) wander randomly, and upon finding food return to their colony while laying down pheromone trails. If other ants find such a path, they are likely not to keep travelling at random, but to instead follow the trail, returning and reinforcing it if they eventually find food (see Ant communication).
Over time, however, the pheromone trail starts to evaporate, thus reducing its attractive strength. The more time it takes for an ant to travel down the path and back again, the more time the pheromones have to evaporate. A short path, by comparison, gets marched over more frequently, and thus the pheromone density becomes higher on shorter paths than longer ones. Pheromone evaporation also has the advantage of avoiding the convergence to a locally optimal solution. If there were no evaporation at all, the paths chosen by the first ants would tend to be excessively attractive to the following ones. In that case, the exploration of the solution space would be constrained.
Thus, when one ant finds a good (i.e., short) path from the colony to a food source, other ants are more likely to follow that path, and positive feedback eventually leads all the ants following a single path. The idea of the ant colony algorithm is to mimic this behavior with "simulated ants" walking around the graph representing the problem to solve.