ترجمه کامپیوتر و مکانیک- 14 صفحه
سال 2008
Optimal feature selection using genetic algorithm for mechanical fault detection of induction motor
انتخاب ویژگی بهینه با استفاده از ژنتیک الگوریتم برای تشخیص نقص مکانیکی موتور القایی
Ngoc-Tu NguyenHong-Hee Lee -Jeong-Min Kwon
http://link.springer.com/article/10.1007/s12206-007-1036-3
دانلود رایگان مقاله انگلیسی - انتخاب ویژگی بهینه با استفاده از ژنتیک الگوریتم
چکیده
علامات لرزش در حوزه زمان در تما م جهات عمودی ,محوری,افقی برای تشخیص نقص موتور القایی مکانیکی اندازه گیری می شود. خیلی ویژگیها از این علامات اقتباس می شود.مشکلی که وجود دارد چگونه پیدا کردن ویژگیهای خوب از میان ویژگی تنظیم شده به منظور دریافت طبقه بندی منعطف است.بر اساس موضوع فاصله ثابت,یک GAتعداد ویژگیهای طبقه بندی اشکال را به وسیله انتخاب بهینه کاهش می دهد.یک درخت تصمیم گیری و ماشین برداری چندگانه برای نشان دادن توانایی و کارایی این شیوه انتخاب استفاده می شوند.مقایسه ها نشان داده که سیستم های تشخیص بعد از انتخاب ویژگی مخصوص عملکرد بهتری نسبت به سیستم معمولی دارند.
کلمات کلیدی:درخت تصمیم گیری,ماشین پشتیبان برداری,GA,موتور القایی,تشخیص نقص مکانیکی
Abstract
Time-domain vibration signals are measured in all horizontal, axial, and vertical directions for induction motor mechanical fault diagnostics. Many features are extracted from these signals. The problem is how to find the good features among the feature set in order to receive reliable classifications. Based on specific distance criteria, a genetic algorithm (GA) is introduced to reduce the number of features by selecting optimized ones for fault classification purpose. A decision tree and multi-class support vector machine are used to illustrate the potentiality and efficiency of this selection method. Comparisons show that the diagnostic systems after selecting specific features perform better than the original system.
Keywords
Mechanical fault detection Induction motor Genetic algorithm Support vector machine Decision tree

References
. Widodo, B. S. Yang and T. Han, Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors,
Expert Systems with Applications 32 (2007) 299–312.
CrossRefGoogle Scholar
W. Sun, J. Chen and J. Li, Decision tree and PCA-based fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing, (2006).
V. Sugumaran, V. Muralidharan and K. I. Ramachandran, Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing,
Mechanical Systems and Signal Processing 21 (2007) 930–942.
CrossRefGoogle Scholar
B. S. Yang, C. H. Park and H. J. Kim, An efficient method of vibration diagnostics for rotating machinery using a decision tree,
International Journal of Rotating Machinery 6(1) (2000) 19–27.
CrossRefGoogle Scholar
D. S. Lim, B. S. Yang and D. J. Kim, An expert system for vibration diagnosis of rotating machinery using decision tree, International Journal of COMADEM (2000) 31–36.
C. L. Huang and C. J. Wang, A GA-based feature selection and parameters optimization for support vector machines,
Expert Systems with Applications 31 (2006) 231–240.
CrossRefGoogle Scholar
H. Gu, Z. Gao and F. Wu, Selection of optimal features for iris recognition, International Symposium on Neural Networks, China. (2005) 81–86.
Y. Yang, D. Yu and J. Cheng, A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM, Measurement (2006) doi: 10.1016/j.measurement.2006.10.010.
L. B. Jack and A. K. Nandi, Fault detection using support vector machines and artificial neural networks, Augmented by Genetic Algorithms,
Mechanical Systems and Signal Processing 16 (2002) 373–390.
CrossRefGoogle Scholar
B. Samanta and K. R. Al-Balushi, Artificial neural network based fault diagnostics of rolling element bearings using time-domain features,
Mechanical Systems and Signal Processing 17 (2003) 317–328.
CrossRefGoogle Scholar
B. Samanta, K. R. Al-Balushi and S. A. Al-Araimi, Artificial neural networks and genetic algorithm for bearing fault detection, Soft Comput. (2006) 264–271.
Y. Lei, Z. He, Y. Zi and Q. Hu, Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs, Mechanical Systems and Signal Processing (2007) doi:10.1016/j.ymssp.2006.11.003.
T. Lindh, J. Ahola, P. Spatenka and A. L. Rautiainen, Automatic bearing fault classification combining statistical classification and fuzzy logic, NORPIE, (2004)
J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publisher, California, USA, (1993).
Google Scholar
J. S. Rao, Vibratory Condition Monitoring of Machines, Alpha Science International Ltd., (2000) 361–382.
C. C. Chang and C. J. Lin, LIBSVM: a library for support vector machines, Software available at
http://www.csie.ntu.edu.tw/:_cjlin.libsvm, (2001).
C. W. Hsu, C. C. Chang and C. J. Lin, A practical guide to support vector classification. Available at www.csie.ntu.edu.tw/:_cjlin/papers/guide/guide.pdf.
The C4.5 code comes from the Internet (http://rulequest.com/personal/c4.5r8.tar.gz).
-