پروپوزال مکانیک- طراحی کاربردی - 13 صفحه
((فایل Word و قابل ویرایش می باشد.))
بعد از پرداخت به راحتی همان لحظه می توانید آن را دانلود کنید.
پروپوزال مکانیک طراحی کاربردی- طراحی کنترلرهای غیر خطی برای کنترل حرکت یک ربات زیرآبی
Designing nonlinear controllers to control the movement of an underwater robot
قیمت انجام پروپوزال از 250 هزار تومان تا 500 متغیر است که پروپوزال های آماده قیمت ناچیزی دارند.
پس منصف باشید و قیمت ها را با هم مقایسه کنید.
((((پروپوزال های سایت حاصل زحمت محققین سایت می باشد و اینترنتی نیست.))))
فهرست مطالب:
بیان مسأله
اهمیت و ضرورت انجام تحقیق
مرور ادبیات و سوابق مربوطه
جنبه جدید بودن و نوآوری در تحقیق
شرح کامل روش
جامعه آماری، روش نمونهگیری و حجم نمونه
زمان بندی انجام تحقیق
منابع
بیان مسأله
اهمیت و ضرورت انجام تحقیق
مرور ادبیات و سوابق مربوطه
جنبه جدید بودن و نوآوری در تحقیق
شرح کامل روش
جامعه آماری، روش نمونهگیری و حجم نمونه
زمان بندی انجام تحقیق
منابع
منابع
[ 1 ] T. Prestro, Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle, Master thesis, University of California at Davis, 1994.
[2] M. Abkowitz. Stability and Motion Control of Ocean Vehicles. MIT Press, Cambridge, 1972.
[3] B. Allen, R. Stokey, T. Austin, N. Forrester, R. Goldsborough, M. Purcell, and C. von Alt. REMUS: A small, low cost AUV; system description, field trials and performance results. In Proceedings M TS/IEEE Oceans 1997.
[4] B. Allen, W. Vorus, and T. Prestero. Propulsion system performance enhancements on REMUS AUVs. In Proceedings MTS/ IEEE Oceans, Providence, Rhode Island, September 2000.
[5] P. Ananthakrishnan. Dynamic response of an underwater body to surface waves. In Proceedings ASM E Forum on Advances in Free Surface and Interface Fluid Dyanamics, San Francisco, CA, 1999.
[6] R. D. Blevins. Formulas for Natural Frequency and Mode Shape. Kreiger Publishing, Florida, 1979.
[7] M. R. Bottaccini. The stability coefficients of standard torpedoes. NAVORD Report 3346, U.S. Naval Ordnance Test Station, China Lake, CA, 1954.
[8] J. Feldman. Revised standard submarine equations of motion. Report DTNSRDC/SPD-0393- 09, David W. Taylor Naval Ship Research and Development Center, Bethesda, MD, June 1979.
[9] J. Fidler and C.A. Smith. Methods for predicting submersible hydrodynamic char acteristics. Report NCSC TM-238-78, Naval Coastal Systems Laboratory, Panama City, FL, 1978.
[10] T.I. Fossen. Guidance and Control of Ocean Vehicles. John Wiley & Sons, New York, 1994.
[11] R. W. Fox and A. T. McDonald. Introduction to Fluid Mechanics. J. Wiley and Sons, New York, 4th edition, 1992.
[12] M. Gertler and G. Hagen. Standard equations of motion for submarine simulation. Report DTNSRDC 2510, David W. Taylor Naval Ship Research and Development Center, Bethesda, MD, June 1967.
[13] M.J. Griffin. Numerical prediction of the forces and moments on submerged bodies operating near the free surface. In Proceedings of the 2000 SNAME/ ASNE Student Paper Night, Massachusetts Institute of Technology, January 2000..
[14] Michael F. Hajosy. Six Degree of Freedom Vehicle Controller Design for the Operation of an Unmanned Underwater Vehicle in a Shallow Water Environment. Ocean Engineer's thesis, Massachusetts Institute of Technology, Department of Ocean Engineering, May 1994.
[15] S.F. Hoerner. Fluid Dynamic Drag. Published by author, 1965.
[16] S. F. Hoerner and Henry V. Borst. Fluid Dynamic Lift. Published by author, second edition, 1985.
[17] P. C. Hughes. Spacecraft Attitude Dynamics. John Wiley and Sons, New York, 1986. 21
[18] D. E. Humphreys. Development of the equations of motion and transfer functions for underwater vehicles. Report NCSL 287-76, Naval Coastal Systems Laboratory, Panama City, FL, July 1976.
[19] D. E. Humphreys. Dynamics and hydrodynamics of ocean vehicles. In Proceedings M TS/IEEE Oceans 2000, Providence, Rhode Island, September 2000.
[20] E. V. Lewis. Principles of Naval Architecture. Society of Naval Architects and Marine Engineers, Jersey City, New Jersey, second edition, 1988.
[21] W-M Lin and Y. P. K. Yue. Numerical solutions for large-amplitude ship motions in the time domain. In Proceedings Eighteenth Symposium on Naval Hydrod ynamics, Ann Arbor, Michigan, 1990.
[22] D. F. Myring. A theoretical study of body drag in subcritical axisymmetric flow. Aeronautical Quarterly, 27(3):186-194, August 1976.
[23] M. Nahon. A simplified dynamics model for autonomous underwater vehicles. In Proceedings 1996 Symposium on Autonomous Underwater Vehicle Technology, pages 373-379, June 1996.
[24] J. N. Newman. Marine Hydrod ynamics. MIT Press, Massachusetts, 1977.
[25] Norman S. Nise. Control Systems Engineering. Benjamin/Cummings, San Francisco, CA, first edition, 1992.
[26] W. D. Ramsey. Boundary Integral M ethods for Lifting Bodies with Vortex Wakes. PhD dissertation, Massachusetts Institute of Technology, Department of Ocean Engineering, May 1996
[27] J.S. Riedel. Seaway Learning and Motion Compensation in Shallow Waters for Small A UVs. PhD dissertation, Naval Postgraduate School, Department of Ocean Engineering, June 1999.
[28] R. Stokey and T. Austin. Sequential long baseline navigation for REMUS, an autonomous underwater vehicle. In Proceedings Information Systems for Navy Divers and A UVs Operating in Very Shallow Water and Surf Zone Regions, April 1999.
[29] M.S. Triantafyllou. Maneuvering and control of surface and underwater vehicles. Lecture Notes for MIT Ocean Engineering Course, 1996.
[30] C. von Alt, B. Allen, T. Austin, and R. Stokey. Remote environmental monitoring units. In Proceedings M TS/IEEE Oceans 1994, Cambridge, MA, 1994.
[31] C. von Alt and J.F. Grassle. LE0-15: An unmanned long term environmental observatory. InProceedings M TS/IEEE Oceans 1992, Newport, RI, 1992.