پروپوزال کامپیوتر-نرم افزار - 17 صفحه
((فایل Word و قابل ویرایش می باشد.))
بعد از پرداخت به راحتی همان لحظه می توانید آن را دانلود کنید.
پروپوزال کامپیوتر - بهبود الگوریتم امواج آب در بهینه سازی چند هدفه مبتنی بر نظریه بازی ها
Improve the water wave algorithm in multi-objective optimization based on game theory
قیمت انجام پروپوزال از 250 هزار تومان تا 500 متغیر است که پروپوزال های آماده قیمت ناچیزی دارند.
پس منصف باشید و قیمت ها را با هم مقایسه کنید.
((((پروپوزال های سایت حاصل زحمت محققین سایت می باشد و اینترنتی نیست.))))
فهرست مطالب:
بیان مسئله
شمای درختی روش های بهینه سازی چند هدفه
اهمیت تحقیق و چالش
مرور ادبیات
الگوریتم امواج آب
روش تحقیق
شمای کلی بهینه سازی چندهدفه پیشنهادی مبتنی بر نظریه بازی ها
مراحل الگوریتم پیشنهادی
سابقه علمی و فهرست منابع
منابع
J. Periaux et al, Multi-Objective EAs And Game Theory, Evolutionary Optimization and Game Strategies for Advanced Multi-Disciplinary Design, Intelligent Systems, Control and Automation: Science and Engineering vol. 2, pp. 154–159 (2015).
Murata, T. ; Ishibuchi, H., MOGA: multi-objective genetic algorithms, Evolutionary Computation vol. 1, pp. 15–19, (1995).
Schaffer, J.D, Some experiments in machine learning using vector evaluated genetic algorithms, vol. 2, pp. 134–139 (1985).
Jerey Horn, Nicholas Nafpliotis, and David E. Goldberg, A Niched Pareto Genetic Algorithm for Multiob jective , EEE World Congress on Computational Intel ligence, vol. 4, pp. 145–149,( 1994).
Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan, A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II , vol. 3, pp. 98–105 (2000).
Carlos A. Coello Coello Coello, Gregorio Toscano Pulido, A Micro-Genetic Algorithm for Multiobjective Optimization, Evolutionary Multi-Criterion Optimization vol. 1, pp. 87–92,( 2001).
Mostaghim, S. ; Dept. of Electr. Eng., Paderborn Univ., Germany ; Teich, J, Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , Swarm Intelligence Symposium, vol. 4, pp. 121–126 (2003).
Joshua Knowles, The Pareto Archived Evolution Strategy : A New Baseline Algorithm for Pareto Multiobjective Optimisation, Evolutionary Computation, vol. 7, pp. 79–83 (1999).
David W. Corne, Joshua D. Knowles, Martin J. Oates, The Pareto Envelope-based Selection Algorithm for Multiob jective Optimization , LECTURE NOTES IN COMPUTER SCIENCE vol. 1, pp. 133–137 (2000).
Eckart Zitzler, Marco Laumanns, and Lothar Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, vol. 6, pp. 115–120 (2001).
Qingfu Zhang, MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition, IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, vol. 3, pp. 102–107 (2007).
Ramin Rajabioun, Esmaeil Atashpaz-Gargari, and Caro Lucas,: Colonial Competitive Algorithm as a Tool for Nash Equilibrium Point Achievement, in:Springer-Verlag Berlin Heidelberg 2008, vol. 3, pp. 680–695(2008)
Haurie, A., Krawczyk, J.: An Introduction to Dynamic Games ,vol. 4, pp. 121–126 (2000). Basar, T., Olsder, G.J.: Noncooperative Game Theory, 2nd edn. Academic Press, London
Son, Y.S., Baldick, R.: Hybrid Coevolutionary Programming for Nash Equilibrium Search in Games with Local Optima. IEEE Trans. on evolutionary computation vol. 8, pp. 54–60 (2004).
Cau, T.D.H., Anderson, E.J.: A co-evolutionary approach to modeling the behavior of participants in competitive electricity markets. In: Proc. IEEE Power Engineering Soc. Summer Meeting, vol. 3, pp. 1534–1540 (2002).
Gaoping, W., Yongji, W.: A game model based co-evolutionary for constrained multi optimization problems. In: IEEE International Symposium on Communications and Information Technology, vol. 1, pp. 187–190 (2005).
Daskalakis, C., Papadimitriou, C.: Computing Equilibria in Anonymous Games. In: 48thAnnual IEEE Symposium on Foundations of Computer Science, pp. 83–93 (2007).
You Seok Son, Hybrid coevolutionary programming for Nash equilibrium search in games with local optima , Evolutionary Computation, vol. 7, pp. 111–119 (2004).
Belgana, A, Open Energy Market Strategies in Microgrids: A Stackelberg Game Approach Based on a Hybrid Multiobjective Evolutionary Algorithm , Smart Grid, IEEE Transactions , vol. 7, pp. 105–110 (2014(.
Angelo, J.S, Differential evolution to find Stackelberg-Nash equilibrium in bilevel problems with multiple followers , Evolutionary Computation (CEC), vol. 5, pp. 25–32 (2015).
Dumitrescu, D., Job Scheduling and Bin Packing from a Game Theoretical Perspective: An Evolutionary Approach, Symbolic and Numeric Algorithms for Scientific Computing vol. 3, pp. 1534–1541 (2010(.
Jacques Periaux, Multi-Objective EAs And Game Theory, Volume 75 of the series Intelligent Systems, Control and Automation: Science and Engineering , vol. 1, pp. 187–190 )2014).
Y. J. Zheng, “Water wave optimization: A new nature-inspired metaheuristic,” Computers & Operations Research, vol. 55, pp. 1–11, (2015)
X. S. Yang and A. H. Gandomi, “Bat algorithm: A novel approach for global engineering optimization,” Engineering Computations, vol. 29, no.5, pp. 464–483,( 2012)
R. Oftadeh, M. Mahjoob and M. Shariatpanahi, “A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search,” Computers & Mathematics with Applications, vol. 60, no. 7, pp. 2087–2098, (2010)
E. Rashedi, H. Nezamabadi-pour and S. Saryazdi, “GSA: A gravitational search algorithm,” Information Sciences, vol. 179, no. 13, pp. 2232–2248, (2009)
D. Simon, “Biogeography-based optimization,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 6, pp. 702–713, (2008)
A. Mehrabian and C. Lucas, “A novel numerical optimization algorithm inspired from weed colonization,” Ecological Informatics, vol. 1, no. 4, pp. 355–366, (2006)