پایان نامه مهندسی پزشکی-60 صفحه
((فایل Word و قابل ویرایش می باشد.))
بعد از پرداخت به راحتی همان لحظه می توانید آن را دانلود کنید.
پایان نامه مهندسی پزشکی-کنترل اشتراکی روبات در اسکلت خارجی ایجاد الگوی راه رفتن روی زمین -توانبخشی
The robot control on the outer skeleton creates a pattern of walking on the ground
قیمت انجام پایان نامه از 100 هزار تومان تا 4 میلیون تومان متغیر است که پایان نامه های آماده قیمت ناچیزی دارند.
پس منصف باشید و قیمت ها را با هم مقایسه کنید.
((((پایان نامه ها و تحقیق های تخصصی سایت حاصل زحمت محققین سایت می باشد و اینترنتی نیست.))))
فهرست مطالب:
فصل اول
کنترل اشتراکی هیبرید FES-روبات در اسکلت خارجی توانبخشی گام برداشتن گردشی
چکیده
مقدمه
مواد و روش ها
کنترل مفصل زانو
برآوردکننده خستگی ماهیچه
کنترل کننده محرک
رویکرد اشتراکی
ایمنی
ارزشیابی با افراد سالم
تحلیل داده
نتایج
بحث و بررسی
نتیجه گیری
یادداشت ها
فصل دوم
ایجاد الگوی راه رفتن روی زمین
ایجاد الگوی راه رفتن روی زمین با جهت گیری فردی در روبات توانبخشی براساس خط سیر پا و لگن
چکیده
مقدمه
رویکرد و دیدگاه
1.2. فرد (انسان)
2.2. سیستم (دستگاه)
3.2. محیط (تحرک)
4.2. روش شناسی توانبخشی کلینیکی
توانبخشی گام برداشتن کمکی روباتیک با NaTUre-gaits
1.3. کنترل لگنی
2.3. پایگاه متحرک
3.3. هم ترازی روباتیک
4. حرکت راه رفتن طبیعی در طول توانبخشی گام برداشتن
آزمون ها روی افراد بیمار و سالم
1.5. آزمون بیمار
2.5. ارزشیابی EMG عملکرد سیستم
1.2.5. جمع آوری و پردازش داده های EMG ماهیچه های پا
2.2.5. جمع آوری و پردازش داده های EMG ماهیچه های پا
3.5. پروفایل فعالسازی الگوی میانگین ماهیچه
1.3.5. ارزشیابی عملکرد سیستم
نکات تصمیم گیری
منابع
منابع
1. Merrit JL, Yoshida MK: Knee-ankle-foot orthoses: indications and practical applications of long leg braces. Phys Med Rehabil 2000, 14:395–422.
2. Fatone S: A review of the literature pertaining to KAFOs and HKAFOs for ambulation. J Prosthet Orthot 2006, 18(3):137–168.
3. Esquenazi A, Talaty M, Packel A, Saulino M: The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J PhysMed Rehabil 2012, 91(11):911–921.
4. Herr H: Exoskeletons and orthoses: classification, design challenges and future directions. J NeuroEng Rehabil 2009, 6:21.
5. Popovic MR, Keller T, Papas IPI, Dietz V, Morari M: Surface-stimulation technology for grasping and walking neuroprostheses. IEEE EngMed Biol Mag 2001, 20:82–93.
6. Thrasher TA, Popovic MR: Functional electrical stimulation of walking: function, exercise and rehabilitation. Ann Readapt Med Phys 2008, 51(6):452–460.
7. Nightingale EJ, Raymond J, Middleton JW, Crosbie J, Davis GM: Benefits of fes gait in a spinal cord injured population. Spinal Cord 2007, 45(10):646–657.
8. Gorgey AS, Black CD, Elder CP, Dudley Ga: Effects of electrical stimulation parameters on fatigue in skeletalmuscle. J Orthop Sports Phys Ther 2009, 39(9):684–692.
9. Binder-Macleod SA, Snyder-Mackler L: Muscle fatigue: clinical implications for fatigue assessment and neuromuscular electrical stimulation. Phys Therapy 1993, 73(12):902–910.
10. Franken HM, Member S, Veltink PH, Fidder M, Boom HBK, Subjects A: Fatigue of intermittently stimulated paralyzed human quadriceps during imposed cyclical lower legmovements. Proc IEEE EngMed Biol Soc 1992, 3:1341–1342.
11. Riess J, Abbas JJ: Adaptative control of cyclicmovements as muscles fatigue using functional electrical stimulation. IEEE Trans Neural Syst Rehabil Eng 2001, 9(3):326–330.
12. Vette AH, Masani K, Kim JY, Popovic MR: Closed-loop control of functional electrical stimulation-assisted arm-free standing in individuals with spinal cord injury: a feasibility study.Neuromodulation: J Int Neuromodulation Soc 2009, 12:22–32.
13. Ferguson KA, Polando G, Kobetic R, Triolo RJ, Marsolais EB: Walking with a hybrid orthosis system. Spinal Cord 1999, 37(11):800–804.
14. del-Ama AJ, Koutsou AD, Moreno JC, De-los Reyes, A, Gil-Agudo ء, Pons JL: Review of hybrid exoskeletons to restore gait following spinal cord injury. J Rehabil Res Dev 2012, 49(4):497–514.
15. Popovic D, Tomovic R, Schwirtlich L: Hybrid assistive system-themotor neuroprosthesis. IEEE Trans Biomed Eng 1989, 36(7):729–737.
16. Kobetic R, To CSC, Schnellenberger JJR, Audu MLM, Bulea TCT, Gaudio R, Pinault G, Tashman S, Triolo RRJ: Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J Rehabil Res Dev 2009, 46(3):447–462.
Obinata G, Ogisu T, Hase K, Kim Y, Genda E: State estimation of walking phase and functional electrical stimulation by wearable device. In Proc. Annual Int. Conf. of the IEEE Engineering inMedicine and Biology Society EMBC 2009. Minessota (USA); 2009:5901–5904.
18. Farris RJ, Quintero HA, Withrow TJ, Goldfarb M: Design of a jointcoupled orthosis for FES-aided gait. In 2009 International Conference on Rehabilitation Robotics, ICORR 2009. Kyoto (Japan); 2009:246–252.
19. Gharooni S, Heller B, Tokhi MO: A new hybrid spring brake orthosis for
controlling hip and knee flexion in the swing phase. IEEE Trans Neural
Syst Rehabil Eng 2001, 9:106–107.
20. Stauffer Y, Allemand Y, Bouri M, Fournier J, Clavel R, Metrailler P, Brodard R,Reynard F: TheWalkTrainer–a new generation of walking reeducation device combining orthoses andmuscle stimulation.IEEE Trans Neural Syst Rehabil Eng 2009, 17:38–45.
21. Goldfarb M, Durfee WK: Design of a controlled-brake orthosis for FES-aided gait. IEEE Trans Rehabil Eng 1996, 4:13–24.
22. Ohashi T, Obinata G, Shimada Y, Ebata K: Control of hybrid FES system
for restoration of paraplegic locomotion. In Proceedings of the 2nd IEEE International Workshop on Robot and Human Communication, 1993: IEEE;
1993:96–101.
23. Vallery H, Buss M: Towards a hybridmotor neural prosthesis for gait
rehabilitation: a project description. J Automatic Control 2005, 15:19–22.
24. del-Ama AJ, Moreno JC, Gil-Agudo ء, De-los Reyes, A, Pons JL: Online
assessment of human-robot interaction for hybrid control of walking. Sensors (Basel, Switzerland) 2012, 12:215–225.
25. Hayes K, Hsieh J, Wolfe D, Potter P, Delaney G: Classifying incomplete
spinal cord injury syndromes: algorithms based on the international standards for neurological and functional classification of spinal cord injury patients. Arch Phys Med Rehabil 2000, 81(5):644–652.
26. del-Ama AJ, Moreno JC, Gil-Agudo ء, Palaz n R: A design to compensate gait. In 12th International Conference on New Actuators and 6th International Exhibition on Smart Actuators and Drive Systems, Actuator 2010. Bremen (Germany); 2010:131.
27. Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V,
Lünenburger L: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 2005, 13(3):380–394.
Moreno JC, Brunetti F, Rocon E, Pons J: Immediate effects of a controllable knee ankle foot orthosis for functional compensation of gait in patients with proximal leg weakness. Med Biol Eng Comput 2008, 46(1):43–53.
29. Downey RJ, Bellman M, Sharma N, Wang Q, Gregory CM, Dixon WE: A
novelmodulation strategy to increase stimulation duration in neuromuscular electrical stimulation. Muscle Nerve 2011, 44(3):382–387.
30. Murdock G, Hubley-Kozey C: Effect of a high intensity quadriceps fatigue protocol on knee joint mechanics and muscle activation during gait in young adults. Eur J Appl Physiol 2011, 112(2):439–449.
31. Malesevi´c NM, Popovi´c LZ, Schwirtlich L, Popovi´c DB: Distributed
low-frequency functional electrical stimulation delays muscle fatigue compared to conventional stimulation. Muscle Nerve 2010, 42(4):556–562.
32. Tepavac D, Schwirtlich L: Detection and prediction of FES-induced
fatigue. J Electromyogr Kinesiol 1997, 7:39–50.
33. Chesler NC, Durfee WK: Surface EMG as fatigue indicator during FES-induced isometric muscle contractions. J Electromyogr Kinesiol 1997, 7:27–37.
34. Estigoni EH, Fornusek C, Smith RM, Davis GM: Evoked EMG andmuscle
fatigue during isokinetic FES-cycling in individuals with SCI. Neuromodulation 2011, 14(4):349–355.
35. del-Ama AJ, Bravo-Esteban E, Moreno JC, G mez-Soriano J, Koutsou AD,
Gil-Agudo ء Pons, JL: Knee muscle fatigue estimation during isometric artificially elicited contractions in incomplete spinal cord injured subjects. In 2012 International Conference on Neurorehabilitation (ICNR2012): Converging Clinical and Engineering Research on Neurorehabilitation. Edited by Pons JL, Torricelli D, Pajaro M. Toledo (Spain): Heidelberg, New York: Springer; 2012:329–333.
36. del-Ama AJ, Koutsou AD, Bravo-Esteban E, G mez-Soriano J, Gil-Agudo ء,
Pons JL, Moreno JC: A comparison of customized strategies to manage muscle fatigue in isometric artificially elicited muscle contractions for incomplete SCI subjects. J Autom Control 2013, 21(1):19–25.
37. Kantrowitz A: A Report of the Maimonides Hospital. New York, Brooklyn;
1960.
38. Kralj A, Bajd T, Turk R, Krajnik J, Benko H: Others: Gait restoration in
paraplegic patients: a feasibility demonstration using multichannel surface electrode FES. J Rehabil Res Dev 1983, 20:3–20.
39. Graupe D, Cerrel-Bazo H, Kern H, Carraro U: Walking performance,
medical outcomes and patient training in FES of innervated muscles for ambulation by thoracic-level complete paraplegics. Neurol Res 2008, 30(2):123–130.
40. Marsolais EB, Kobetic R: Functional electrical stimulation for walking
in paraplegia. J Bone Joint Surg 1987, 69(5):728–733.
41. Popovic DB, Popovic MB, Dosen S: Neural prostheses for walking restoration. J Automatic Control 2008, 18(2):63–71.
42. Riener R: Model-based development of neuroprosthesis for paraplegic patients. Philos Trans R Soc Lond 1999, 354(1385):877–894.
43. Andrews B, Baxendale R, Barnett R, Phillips G, Yamazaki T, Paul J, FreemanP: Hybrid FES orthosis incorporating closed loop control and sensory feedback. J Biomed Eng 1988, 10(2):189–195.
44. Popovic D, Radulovic M, Schwirtlich L, Jaukovic N: Automatic vs
hand-controlled walking of paraplegics. Med Eng Phys 2003,25(1):63–73.
45. Franken HM, Veltink PH, Baardman G, Redmeyer Ra, Boom HB: Cycle-to-cycle control of swing phase of paraplegic gait induced by surface electrical stimulation. Med Biol Eng Comput 1995,33(3 Spec No):440–451.
46. Jezernik S, Wassink RGV, Keller T: Slidingmode closed-loop control of,
FES: controlling the shank movement. IEEE Trans Bio-med Engs 2004,
51(2):263–272.
47. Ajoudani A, Erfanian A: A neuro-sliding-mode control with adaptive
modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation. IEEE Trans Biomed Eng 2009, 56(7):1771–1780.
48. Gollee H, Murray-Smith DJ, Jarvis JC: A nonlinear approach to modeling of electrically stimulated skeletalmuscle. IEEE Trans Biomed Eng 2001, 48(4):406–415.
49. Joni´c S, Jankovi´c T, Gaji´c V, Popovi´c D: Threemachine learning techniques for automatic determination of rules to control locomotion. IEEE Trans Biomed Eng 1999, 46(3):300–310.
50. Kobravi H, Erfanian A: Decentralized adaptive robust control based on
slidingmode and nonlinear compensator for the control of ankle movement using functional electrical stimulation of. J Neural Eng 2009, 6(4):046007.
Freeman C, Hughes A, Burridge J, Chappell P, Lewin P, Rogers E: Iterative
learning control of FES applied to the upper extremity for rehabilitation. Control Eng Prac 2009, 17(3):368–381.
52. Nguyen R, Gonzلlez AM, Micera S, Morari M: Increasing muscular participation in robot-assisted gait training using FES. In 16th Annual international FES Society Conference, IFESS2011. Sao Paulo (Brasil); 2011.53. Kurosawa K, Futami R, Watanabe T, Hoshimiya N: Joint angle control by
FES using a feedback error learning controller. IEEE Trans Neural Syst Rehabil Eng 2005, 13(3):359–371.
54. Ibrahim B, Huq M, Tokhi M: Identification of active properties of knee
joint using GA optimization. World Acad Sci Eng Technol 2009, 55:441–446.
55. Lynch CL, Popovic MR: A stochasticmodel of knee angle in response to electrical stimulation of the quadriceps and hamstrings muscles.
Artif Organs 2011, 35(12):1169–1174.
56. Bristow D, Tharayil M, Alleyne A: A survey of iterative learning control.
IEEE Control Syst 2006, 26(3):96–114.
57. Jackson AB, Carnel CT, Ditunno JF, Read MS, Boninger ML, Schmeler MR, Williams SR, Donovan WH, Others, Apt OTRL: Outcomemeasures for
gait and ambulation in the spinal cord injury population. J Spinal Cord 2008, 31(5):487–499.
58. Demers L, Monette M, Lapierre Y, Arnold DL, Wolfson C: Reliability,
validity, and applicability of the Quebec user evaluation of satisfaction with assistive technology (QUEST 2.0) for adults with multiple sclerosis. Disabil Rehabil Assist Technol 2002, 15(24):21–30.
59. Botter A, Oprandi G, Lanfranco F, Allasia S, Maffiuletti Na, Minetto MA:
Atlas of the muscle motor points for the lower limb: implications for electrical stimulation procedures and electrode positioning. Euro J Appl Physiol 2011, 111(10):2461–2471.
60. Ziegler JG, Nichols N: Optimum settings for automatic controllers.
Trans ASME 1942, 64(11):759–765.
61. Fuhr T, Quintern J, Riener R, Schmidt G: Walking with WALK! A
cooperative, patient-driven neuroprosthetic system. IEEE EngMed Biol Mag 2008, 27:38–48.
62. Nguyen R, Micera S, Morari M: Iterative learning control for FES of the
ankle. In 16th Annual international FES Society Conference, IFESS2011,
Vienna (Austria). 2011.
63. Bulea TC, Kobetic R, Triolo RJ: Restoration of stance phase knee flexion
during walking after spinal cord injury using a variable impedance orthosis. In 33th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011:608–611.
64. Piazza S, Torricelli D, Brunetti F, Pons JL: A novel FES control paradigm
based onmuscle synergies for postural rehabilitation therapy with hybrid exoskeletons. In 2012 Annual International Conference of the IEEE Engineering inMedicine and Biology Society (EMBC). 2012:1868–1871.
65. Harvey LA, Smith MB, Davis GM, Engel S: Functional outcomes attained
by T9-12 paraplegic patients with the walkabout and the isocentric reciprocal gait orthoses. Arch Phys Med Rehabil 1997, 78(7):706–711.
66. Whittle M, Cochrane G, Chase A: A comparative trial of two walking
systems for paralysed people. Spinal Cord 1991, 29(2):97–102.
67. Sykes L, Ross E: Objective measurement of use of the reciprocating
gait orthosis (RGO) and the electrically augmented RGO in adult patients with spinal cord lesions. Prosthet Orthot Int 1996, 20(2):182–190.
68. Olmos L, Freixes O, Gatti M, Cozzo D, Fernandez S, Vila C, Agrati P, Rubel I: Comparison of gait performance on different environmental
settings for patients with chronic spinal cord injury. Spinal Cord 2008,
46(5):331–334
69. Umphred DA, Neurological Rehabilitation: Philadelphia:Mosby, 2001.
70. Baker R., "Gait analysis methods in rehabilitation," Journal of Neuroengineering and Rehabilitation, 3, Mar 2006.
71. Bohannon RW, Horton MG, and Wikholm JB, "Importance of four variables of walking to patients with stroke," Int J
Rehabil Res, 1991.
72. Bohannon RW, "Strength deficits also predict gait performance in patient with stroke," Percept Mot Skills, 1991.
73. M. Wolf and H. M, Reprogramming surviving motor cortex after stroke in Reprogramming the Cerebral Cortex S Lomber: J
Eggermont eds 2006.
74.T. and Levin M., "Toward a better understanding of coordination in healthy and poststroke gait," Neurorehabilitation and Neural Repair, 2009.
75. September, 2009). Stroke Statistics. Available: http://www.americanheart.org/presenter.jhtml?identifier=4725
77. M. H. Roberts, "A Robot for Gait Rehabilitation," Master of Science, Mechanical Engineering, Massachusetts Institute of Technology, 2006.
78. K.Bharadwaj, T. G. Sugar, and Iee, "Kinematics of a robotic gait trainer for stoke rehabilitation," presented at the IEEE International Conference on Robotics and Automation, 2006.
79. M. Bouri, Y. Stauffer, C. Schmitt, Y. Allemand, S. Gnemmi, R. Clavel, P. Metrailler, and R. Brodard, "The WalkTrainer (TM): A robotic system for walking rehabilitation," in 2006 IEEE International Conference on Robotics and Biomimetics, 1-3,2006, pp. 1616-1621.
80. Y.Allemand, Y.Stauffer, R.Clavel, and R. Broadard, "Design of a new lower extremity orthosis for overground gait
training with the WalkTrainer," in IEEE 11th International Conference on Rehabilitation Robotics, Kyoto,Japan, 2009, pp. 550-555.
81.J. F. Veneman, R. Kruidhof, E. E. G. Hekman, R. Ekkelenkamp, E. H. F. Van Asseldonk, and H. Van Der Kooij, "Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation," IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15, pp. 379-386, 2007.
82. S.Husein, H.Shmidth, S.Hesse, and J. Kruger, "Effect of different training modes on ground reaction forcesduring robot assisted floor walking and stair climbing," in 2009 IEEE International Conference on Rehabilitation Robotics,ICORR 2009, Kyoto,Japan 2009.
83. P. Wang, A. McGregor, T. Adela, H. B. Lim, L. S. Khang, and K. H. Low, "Rehabilitation control strategies for a gait robot via EMG evaluation," presented at the IEEE 11th International Conference on Rehabilitation Robotics, Kyoto, Japan,, 2009.
84. H. J. A. v. Hedel, L. Tomatis, and R. Muller, "Moudulaton of leg muscle activity and kinematics by walking speed and bodyweight unloading," Gait &Posture, 24, pp. 35-45, Aug 2006 2006.
85. Y. F. Fan, M. Loan, Y. B. Fan, Z. Y. Li, and D. L. Luo, "Least-action principle in gait," Epl, 87, Sep 2009.
86. H. J. A. van Hedel, L. Tomatis, and R. Muller, "Modulation of leg muscle activity and gait kinematics by walking speed and bodyweight unloading," Gait & Posture, 24, pp. 35-45, Aug 2006.
87. P. Wang and K. H. Low, "Qualitative evaluations of gait rehabilitation via EMG muscle activation pattern: repetition, symmetry, and smoothness," 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO 2009) Guilin, Guangxi, China, , 2009.
88. A. Morris, R. Donamukkala, A. Kapuria, A. Steinfeld, J. T. Matthews, J. Dunbar-Jacob, and S. Thrun, "A robotic walker that provides guidance," in 2003 IEEE International Conference on Robotics and Automation, 1-3, 2003, pp. 25-30.
89. J. Rose and J. G. Gamble, Human Walking, 3rd ed.: Lippincott Williams & Wilkins, Philadelphia, 2006.
90. G. S. Virk, S. K. Bag, S. C. Gharooni, M. O. Tokhi, R. I. Tylor, S. Bradshaw, F. Jamil, I. D. Swain, P. H. Chapple, and R. A. Allen, "Robotic Walking Aids for Disabled Persons," in Climbing and Walking Robots, ed: Springer Berlin Heidelberg, 2006, pp. 801-811.
91. M. Whittle, Gait analysis: an introduction: Butterworth-Heinemann Medical, 2002.
92. J. Hidler, W. Wisman, and N. Neckel, "Kinematic trajectories while walking within the Lokomat robotic gait-orthosis," Clinical Biomechanics, 23, pp. 1251-1259, Dec 2008.
93. R. F. M. Kleissen, M. C. A. Litjens, C. T. M. Baten, J. Harlaar, and A. L. Hof, "Consistency of surface EMG patterns obtained during gait from three laboratories using standardised measurement technique," Gait & Posture, 6, pp. 200-209, Dec 1997.
94. A. R. Den Otter, A. C. H. Geurts, T. Mulder, and J. Duysens, "Gait recovery is not associated with changes in the temporal patterning of muscle activity during treadmill walking in patients with post-stroke hemiparesis," Clinical Neurophysiology, 117, pp.4-15, 2006.
95.L. Arendtnielsen, T. Sinkjaer, J. Nielsen, and K. Kallesoe, "Electromyographic patterns and knee-joint kinematics during walking at various speeds," Journal of Electromyography and Kinesiology, 1, pp. 89-95, 1991.
96. J. R. Nymark, S. J. Balmer, E. H. Melis, E. D. Lemaire, and S. Millar, "Electromyographic and kinematic nondisabled gait differences at extremely slow overground and treadmill walking speeds," Journal of Rehabilitation Research and Development, 42,pp. 523-534, Jul-Aug 2005.